Galois symbol maps for abelian varieties over a $p$-adic field

نویسندگان

چکیده

We study the Galois symbol map associated to multiplicative group and an abelian variety which has good ordinary reduction over a $p$-adic field. As byproduct, one can calculate “class group” in sense of class field theory for curves ove

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A CLASS OF p-ADIC GALOIS REPRESENTATIONS ARISING FROM ABELIAN VARIETIES OVER Qp

Let V be a p-adic representation of the absolute Galois group G of Qp that becomes crystalline over a finite tame extension, and assume p 6= 2. We provide necessary and sufficient conditions for V to be isomorphic to the p-adic Tate module Vp(A) of an abelian variety A defined over Qp. These conditions are stated on the filtered (φ,G)module attached to V . 2000 Mathematics Subject Classificatio...

متن کامل

’ HOMOMORPHISMS OF l - ADIC GALOIS GROUPS AND ABELIAN VARIETIES

Let k be a totally real field, and let A/k be an absolutely irreducible, polarized Abelian variety of odd, prime dimension whose endomorphisms are all defined over k. Then the only strictly compatible families of abstract, absolutely irreducible representations of Gal(k/k) coming from A are tensor products of Tate twists of symmetric powers of two-dimensional λ-adic representations plus field a...

متن کامل

Galois sections for abelian varieties over number fields

For an abelian variety A over a number field k we discuss the space of sections of its fundamental group extension π1(A/k). By analyzing the maximal divisible subgroup of the Weil–Châtelet group H(k,A) we show that the space of sections of π1(A/k) contains a copy of Ẑ[k:Q]·dim(A) and is never in bijection with A(k). This is essentially a result about the structure of H(k,T`(A)). 1. Galois secti...

متن کامل

p-ADIC DISTANCE FROM TORSION POINTS OF SEMI-ABELIAN VARIETIES

Tate and Voloch have conjectured that the p-adic distance from torsion points of semi-abelian varieties over Cp to subvarieties may be uniformly bounded. We prove this conjecture for prime-to-p torsion points on semi-abelian varieties over Q p using methods of algebraic model theory. Let Cp denote the completion of the algebraic closure of the p-adic numbers with p-adic valuation v normalized t...

متن کامل

On the Image of L-adic Galois Representations for Abelian Varieties of Type I and Ii

In this paper we investigate the image of the l-adic representation attached to the Tate module of an abelian variety over a number field with endomorphism algebra of type I or II in the Albert classification. We compute the image explicitly and verify the classical conjectures of Mumford-Tate, Hodge, Lang and Tate, for a large family of abelian varieties of type I and II. In addition, for this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 2021

ISSN: ['0065-1036', '1730-6264']

DOI: https://doi.org/10.4064/aa191129-11-4